Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Bonjour AIDEZ MOI SVP pour cet exercice de maths
Je n’ai réussi que la question 1,2 et 3. Merci d’avance !!
Niveau première spé​


Bonjour AIDEZ MOI SVP Pour Cet Exercice De Maths Je Nai Réussi Que La Question 12 Et 3 Merci Davance Niveau Première Spé class=

Sagot :

Réponse :

Bonjour

Explications étape par étape :

Je pars donc du principe que l'énoncé comporte une erreur et qu'il faut lire:

"Monter que pour tout x ≥ 2 , on a :

x³ ≥ -3x²+9x+1

1)

h(x)=x³-(-3x²+9x+1)

h(x)=x³+3x²-9x-1

h '(x)=3x²+6x-9

h '(x) est < 0 entre ses racines car le coeff de x² est > 0.

On résout :

3x²+6x-9=0

3(x²+2x3)=0

x²+2x-3=0

Δ=2²-4(1)(-3)=16

√16=4

x1=(-2-4)/2=-3

x2=(-2+4)/2=1

h(x) < 0 sur [-3;1] et > 0 pour le reste.

2)

Variation de h(x) :

x------>-∞..............-3................1...................+∞

h(x)--->.........+.......0..........-.....0..........+......

h(x)--->........C.......?..........D.....?.........C..........

C=flèche qui monte et D=flèche qui descend.

D'après ce tableau h(x) est croissante sur [1;+∞[ donc est croissante sur [2;+∞[.

3)

h(2)=2³+3*2²-9*2-1=1  > 0

h(x) est croissante sur [-2;+∞[ et vaut 1 pour x=2.

Donc sur [2;+∞[ ,

h(x) > 0 , ce qui donne :

f(x) -g(x) > 0 soit :

f(x) > g(x) soit :

x³ > -3x²+9x+1

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.