Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.

Bonjour j’ai un exercice en math et je n’arrive pas à le faire est ce que quelqu’un pourrait m’aider ?

g est la fonction définie sur R par :
g(x) = -x² + 3x – 1:
a) Vérifier que pour tout nombre réel h est différent de 0,
g(1+h)-g(1)/h =-h+1

b) En déduire que g est dérivable en 1 et donner g'(1).


Sagot :

Réponse :

Explications étape par étape :

g(x) = -x² + 3x – 1

a)

a) Vérifier que pour tout nombre réel h  différent de 0,

g(1+h)-g(1)/h =-h+1

g(1+h) = -(1+h)² + 3(1+h) – 1

g(1+h) = -(1+2h+h²) + 3(1+h) – 1

g(1+h) = -1-2h-h²+3+3h-1

g(1+h) = -h²+h+1

g(1) = -1+3-1

g(1) = 1

g(1+h) - g(1) =  -h²+h+1-1

g(1+h) - g(1) =  -h²+h

g(1+h) - g(1) = h( -h+1)

et donc [g(1+h) - g(1)]/h = -h+1

b) En déduire que g est dérivable en 1 et donner g'(1).

g'(1) $ lim quand h tend vers zero de  [g(1+h) - g(1)]/h

Conclusion g'(1) = 1

Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.