Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.
Sagot :
Bonsoir :))
- Question 1
[tex]Rappel\ cours:\ (x^{n})'=nx^{n-1}\ \ \ \ (ax)'=a\ \ \ \ (a)'=0\\f'(x)=6x-2[/tex]
- Question 2
[tex]f'(t)=-15t^{2}+1[/tex]
- Question 3
[tex]Rappel\ cours:\ (u.v)'=u'v+uv'\\u=x+3\\u'=1\\v=x^{2}-1\\v'=2x\\\\f'(x)=1(x^{2}-1)+(x+3)(2x)\\f'(x)=x^{2}-1+2x^{2}+6x\\f'(x)=3x^{2}+6x-1[/tex]
- Question 4
[tex]Rappel\ cours:\ (\frac{u}{v})'=\frac{u'v-uv'}{v^{2}}\\\\u=2a^{5}-5a^{2}+10\ \ \ \ \ \ u'=10a^{4}-10a\\v=2\ \ \ \ \ \ \ \ v'=0\\\\f'(a)=\frac{(10a^{4}-10a)*2-(2a^{5}-5a^{2}+10)*0}{2^{2}}\\\\f'(a)=\frac{20a(a^{3}-1)}{4}\\\\f'(a)=5a(a^{3}-1)\ \ ou\ \ f'(a)=5a^{4}-5a[/tex]
Espérant t'avoir apporté les éléments nécessaires à ta compréhension, tu peux revenir vers moi pour des explications supplémentaires.
Bonne continuation !! ;)
Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.