Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Notre plateforme de questions-réponses vous connecte avec des experts prêts à fournir des informations précises dans divers domaines de connaissance. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Bonjour SVP aider moi pour cette question pour demain et merci d'avance
avec une explication car je pas compris

ABC est un triangle quelconque, I le milieu de [BC], [CH] le segment-hauter relatif à [AB] et [BP] le segment-hauteur relatif à [AC] . Démontre que le triangle HIP est isocèle .​​


Sagot :

bonjour

propriété :

dans un triangle rectangle la médiane relative à l'hypoténuse a pour

longueur la moitié de la longueur de l'hypoténuse (voir image)

1) BP est la hauteur relative au côté [AC]

                le triangle BPC est rectangle en P

                I est le milieu de l'hypoténuse [BC]

d'après la propriété :

              PI = 1/2 BC

2) même raisonnement dans le triangle rectangle BHC

              HI = 1/2 BC

on a : PI = 1/2 BC  et  HI = 1/2 BC

on en déduit l'égalité des longueurs PI et HI

le triangle HPI est isocèle en I

une remarque

le cercle de diamètre [BC] passe par H et P

View image jpmorin3