Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés dans divers domaines sur notre plateforme. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Bonjour, j’ai cette exercice à faire, je ne comprends pas

Exercice 45. Pour encourager ses employés, une entreprise augmente les salaires tous les ans
d'un taux de 3%.
1. Combien gagnerait un employé après 5 ans de travail si son salaire mensuel de départ
était 1 200 € ?
2. Quel salaire de départ permettrait d'avoir un salaire de 3 000 € après 10 ans ?
3. Quelle serait la durée minimale pour passer d'un salaire de 1500 € à un salaire de 2000
€?
4. Ayant changé de fonction, un employé a vu son salaire mensuel passer de 1500 à 2000
€en 4 ans. Quel a été le taux annuel moyen d'augmentation de son salaire pendant
cette période?
5. Un autre employé a vu son salaire augmenter successivement de 3% à la fin de la lère
année, de 4% la seconde, 10% la troisième puis 3% à la fin de la quatrième année. Si
son salaire mensuel de départ est 1 200 €, quel est son salaire mensuel la cinquième
année ? Quel est le taux annuel moyen d'augmentation de son salaire pendant cette
période?

Merci


Sagot :

Réponse :

1°) augmentation annuelle de 3% --> coeff = 1,03

  Salaire dans 5 ans = 1200 x 1,03^5 ≈ 1391 €/mois .

■ 2°) on doit résoudre :

               So x 1,03^10 = 3000

        So x 1,34391638 = 3000

                               So ≈ 2232,28 €/mois .

■ 3°) 1500 x 1,03^n = 2000 donne :

                    1,03^n = 4/3

                            n = (Log4 - Log3) / Log1,03

                            n ≈ 9,7 années .

          autre méthode :

          2000 x 1,5 = 3000 ; et 1500 x 1,5 = 2250 ≈ 2232

          donc n = 10 ans .

          vérif avec n = 10 ans :

          1500 x 1,03^10 ≈ 2015,87 €/mois .

■ 4°) 1500 x q^4 = 2000 donne :

                    q^4 = 4/3

             4 Log q = Log4 - Log3    

                Log q = 0,25 (Log4 - Log3)

                Log q = 0,0312347

                       q = 10^0,0312347

                       q ≈ 1,07457

         il faut donc une augmentation annuelle de 7,46% environ !

         vérif : 1500 x 1,0746^4 ≈ 2000 €/mois .

■ 5°) 1200 x 1,03 x 1,04 x 1,1o x 1,03 = 1456,4o €/mois .

       taux annuel moyen ?

       1,03² x 1,04 x 1,1o = 1,21367

        1,21367^(1/4) = 1,0496

         d' où taux annuel moyen = 4,96%

          vérif : 1200 x 1,0496^4 ≈ 1456 €/mois .

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.