Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.
Sagot :
Bonsoir,
x^3-2x^2+4 >x+2
x^3-2x^2+4-x-2>0
x^3-2x^2+2-x>0
x^2(x-2)-(x-2)>0
(x-2)(x^2-1)>0
x^3-2x^2+4 >x+2
x^3-2x^2+4-x-2>0
x^3-2x^2+2-x>0
x^2(x-2)-(x-2)>0
(x-2)(x^2-1)>0
Bonsoir :)
Réponse en explications étape par étape :
- Question : Montrer que l'inéquation " x³ - 2x² + 4 ≥ x + 2 " est équivalente à " (x - 2)(x² - 1) ≥ 0 " :
x³ - 2x² + 4 ≥ x + 2
x³ - 2x² + 4 - x - 2 ≥ 0
x³ - 2x² - x + 2 ≥ 0
x²(x - 2) - (x - 2) ≥ 0
D'où : (x - 2)(x² - 1) ≥ 0 ⇔ x³ - 2x² + 4 ≥ x + 2
Voilà
Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.