Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

Bonjour est-ce que quelqu’un peut m’aider pour mon exercise svp

Soit la forme développée du polynome du second
degré f(x) = 0,5x^2 - 2,5x + 3.
1. Le nombre n est-il solution de l'équation
0,5x2 - 2,5x + 3 = 0 ?

a. n =-1.
c. n = 3
b. n = 2.
d. n = -2.

2. En déduire la forme factorisée de f(x).


Sagot :

Réponse :

bonjour

Explications étape par étape :

0.5x²-2.5x+3

polynome du second degré

Δ=2.5²-4(3)(0.5)

Δ=6.52-6

Δ=0.25

√Δ=0.5

x1=2.5-0.5/1 x1=2/1 x1=2

x2=2.5+0.5/1 x2= 3/1 x2=3

solutions ou racines

x=2 ou n=2

x=3 ou n=3

forme factorisée

a(x-x1)(x-x2)

2.5(x-2)(x-3)

bonjour

1)

on calcule

• f(-1)                   (on remplace x par -1)

f(-1) = 0,5*(-1)² - 2,5*(-1) + 3

     = 0,5 + 2,5 + 3

     = 6 (pas solution)

• f(3)                 (on remplace x par 3)

f(3) = 0,5*3² - 2,5*3 + 3

     = 0,5 x 9 - 7,5 + 3

     =  4,5 - 7,5 + 3

    =  7,5 - 7,5

    = 0

• f(2)

f(2) = 0,5*2² - 2,5*2 + 3

     = 0,5*4 - 5 + 3

     =     2    -5  +3

    = 0

• f(-2)

f(-2) = 0,5*(-2)² - 2,5*(-2) + 3

      = 10 (pas solution)

un trinôme du second degré a au plus 2 solutions

ici ces solutions sont  :  2   et   3

2)

si un trinôme du second degré ax² + bx + c possède deux racines

x1 et x2 sa factorisation est

                       a(x - x1)(x - x2)

factorisation de :  0,5x² - 2,5x + 3.

        f(x) = 0,5(x - 2)(x - 3)

le coefficient a vaut 0,5

les racines sont 2 et 3

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.