Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.
Sagot :
Réponse :
4) l(x) = √x (1 - 1/x) x > 0 Dl = ]0 ; + ∞[
la fonction l est une fonction produit dérivable sur Dl et sa dérivée l'
est l'(x) = (uv)' = u'v + v'u
u(x) = √x ⇒ u'(x) = 1/2√x
v(x) = 1 - 1/x ⇒ v'(x) = 1/x²
l '(x) = 1/2√x(1 - 1/x) + √x/x²
= 1/2√x - 1/2x√x + √x/x²
= √x/(2√x * √x) - √x/(2x√x*√x) + √x/x²
= √x/2x - √x/2x² + √x/x²
= x√x/2x² - √x/2x² + 2√x/2x²
= (x√x - √x + 2√x)/2x²
= (x√x + √x)/2x²
= (x + 1)√x/2x²
5) m(x) = (x + 5)/(x² + 1) D = R
la fonction m est une fonction quotient dérivable sur D et sa dérivée m' est : m'(x) = (u/v)' = (u'v - v'u)/v²
u(x) = x + 5 ⇒ u'(x) = 1
v(x) = x² + 1 ⇒ v'(x) = 2 x
m'(x) = ((x² + 1) - 2 x(x +5))/(x² + 1)²
= (x² + 1 - 2 x² - 10 x)/(x² + 1)²
= (- x² - 10 x + 1)/(x² + 1)²
Explications étape par étape :
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.