Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

Bonsoir je suis en terminale et j'ai un dm de math sur les suites très complexe j'ai donc besoin d'aide pour le finir merci d'avance.

Un nouveau magazine arrive sur le marché en 2020. La première année (en 2020), 500 personnes s'abonnent au magazine. On prévoit que chaque année, 80% des abonnées renouvelleront leurs abonnements et 200 nouvelles personnes s'abonneront.

1. Déterminer le nombre d'abonnés en 2021 et en 2022.

2. On note Un le nombre d'abonnés en 2020+n
a) Donner la valeur de U0, U1, et U2
b) Justifier que, pour tout n ∈ ℕ, Un+1 = 0,8Un+200
c) La suite (Un) est-elle arithmétique? géométrique?

3. Résoudre l'équation x= 0,8x+200. On notera X0 la solution de l'équation.

4. Soit (Vn) la suite définie par Vn=Un-Xo
a) Calculer V0, V1, et V2
b) En calculant V1/V0 et V2/V1, conjecturer la nature de la suite (Vn)

5. On veut démontrer la conjecture de la question précédente.
a) Exprimer Vn+1 en fonction de Un+1 puis en fonction de Un et enfin en fonction de Vn.
b) En déduire la nature de la suite (Vn).
c) En déduire l'expression de Vn en fonction de n puis celle de Un en fonction de n.

6. Quel sera le nombre d'abonnés en 2050


Sagot :

Réponse :

1) Déterminer le nombre d'abonnés en 2021 et en 2022

en 2021 :  500 - 500 x 0.2 + 200 = 600

en 2022 : 600 - 600 x 0.2 + 200 = 680

2) a) donner les valeurs de U0 ; U1 et U2

  U0 = 500 ; U1 = 600  et U2 = 680

  b) justifier que;  pour tout n ∈ N,  Un+1 = 0.8Un + 200

   U0 = 500

   U1 = 500 - 500 x 0.2 + 200 = 500(1 - 0.2) + 200 = 500 x 0.8 + 200

   U2 = 600 - 600 x 0.2 + 200 = 0.8 x 600 + 200

   U3 = 680 - 680 x 0.2 + 200 = 0.8 x 680 + 200

...................................

  Un+1 = Un - Un x 0.2 + 200 = 0.8Un + 200

c) la suite (Un) est géométrique de raison q = 0.8  

3) résoudre l'équation  x = 0.8 x + 200

on notera  x0 la solution de l'équation

x = 0.8 x + 200  ⇔ 0.2 x = 200  ⇔ x = 200/0.2 = 1000

donc x0 = 1000

4)  Vn = Un - X0

a) calculer V0 ; V1 et V2

V0 = U0 - 1000 = 500 - 1000 = - 500

V1 = U1 - 1000 = 600 - 1000 = - 400

V2 = U2 - 1000 = 680 - 1000 = - 320

b) V1/V0 = - 400/-500 = 4/5 = 0.8

   V2/V1 = -320/-400 = 32/40 = 4/5 = 0.8

la suite (Vn) est une suite géométrique de raison q = 0.8 et de premier terme V0 = - 500

5) on veut démontrer la conjecture de la question précédente

  Vn = Un - X0

   Vn+1 = Un+1 - X0 = 0.8Un + 200 - 1000 = 0.8Un - 800

Vn+1/Vn =   0.8Un - 800/(Un - 1000) = 0.8(Un - 1000)/(Un - 1000) = 0.8

donc  Vn+1/Vn = 0.8  ⇔ Vn+1 = 0.8Vn

b) en déduire la nature de la suite (Vn)

(Vn) est une suite géométrique de raison q = 0.8  et de premier terme

V0 = - 500

c) en déduire l'expression de Vn en fonction de n, puis celle de Un en fonction de n

      Vn = V0 x qⁿ   donc  Vn = - 500 x 0.8ⁿ

Vn = Un - 1000  ⇔ Un = Vn + 1000   ⇔ Un = - 500 x 0.8ⁿ + 1000

6) quel sera le nombre d'abonnés en 2050

  U30 = - 500 x 0.8³⁰ + 1000 ≈ 1000

 S = 500(1 - 0.8³¹)/0.2 = 2500

Explications étape par étape :

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.