Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

J'ai besoin d'aide pour tous les exercices qui sont sur la feuille c'est sur le Théorème de Thales . A l'exercice 1 on s'utilise de thales au 2 la reciproque de thales et la 3 de thales j'ai vraiment besoins de vous c'est un DM de Maths . Si vous repondez bien aux exercices vous aurez 10 points ! 



Jai Besoin Daide Pour Tous Les Exercices Qui Sont Sur La Feuille Cest Sur Le Théorème De Thales A Lexercice 1 On Sutilise De Thales Au 2 La Reciproque De Thales class=

Sagot :

EXERCICE 1:

 

D'après le texte et la figure, on sait que :

- Les droites (MN) et (BC) sont parallèles

- les droites (BN) et (NC) sont sécantes en A.

 

donc le théorème de Thalès s'écrit :

AM/AB = AN/AC = MN/BC

 

Calcul de MN:

 

J'utilise l'égalité: AM/AB = MN/BC

J'en déduis que :

MN = AM*BC / AB

MN = 2*7,5 / 5

MN = 3

[MN] mesure 3cm

 

 

EXERCICE 2:

 

1) D'après le texte et la figure, on sait que :

- Les droites (CT) et (AR) sont parallèles

- les droites (ET) et (CB) sont sécantes en L.

 

donc le théorème de Thalès s'écrit :

LA/LC = LR/LT = AR/CT

 

Calcul de LR:

 

J'utilise l'égalité: LA/LC = LR/LT

J'en déduis que :

LR = LA*LT / LC

LR = 4,8*9 / 6

LR = 7,2

[LR] mesure 7,2cm

 

2) D'après l'énoncé et la figure, on sait que :

- les points C, L, B d'une part

- les points E, L, T d'autre part sont alignés dans le même ordre.

 

Calcul des quotients :

 

LC/LB = 6/2 = 3

LT/LE = 9/3 = 3

 

Je constate que LC/LB = LT/LE donc la réciproque du théorème de Thalès permet de conclure que les droites (CT) et (EB) sont parallèles.

 

 

 

EXERCICE 3 :

 

1) Tu traces d'abord [AB] mesurant 10,4 cm. A l'aide de ton compas, tu piques sur A et tu fais un arc de cercle de 9,6 cm. Ensuite, tu iques sur B et tu fais un arc de cercle de 4 cm. Tu place le point C à l'intersection des 2 arcs de cercles et tu traces [AB] et [AC].

 

2) [AB] est le plus grand côté donc si le triangle ABC était rectangle, il le serait en C et l'hypoténuse serait [AB].

 

Calcul des quotients:

AB² = 10,4²                                             AC² + BC² = 9,6² + 4²

       = 108,16                                                             = 92,16 + 16

                                                                                    = 108,16

Je constate que AB² = AC² + AB² donc la réciproque du théorème de Pythagore permet de conclure que le triangle ABC est rectangle en C.

 

3) Tu places le point D à 7,8cm du point A, sur le segment [AB].

Pour le cercle, tu trouves le milieu de AD. Le rayon du cercle est de 3,9cm.

 

Je sais que : le triangle AEB est inscrit dans le cercle (C) de diamètre [AD].

Propriété : Si un triangle est inscit dans un cercle de diamètre l'un de ses côtés, alors ce triangle est rectangle.

Conclusion: AEB est rectangle en E.

 

4) Tu utilise le théorème de Thalès comme précedement

 

4) Tu utilise Thalès comme avant

 

 

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.