Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour Après des heures je n y arrive pas pouvez vous m aidez

Trouvez deux nombres entiers relatifs dont la somme est 20 et le produit est 96?

Il faut résoudre avec la méthode de Diophante.
La contrainte sur le produit 20 s'écrit sous la forme 10+a et 10-a
( On vérifie bien que la somme est 20)
La contrainte sur le produit 96 s'écrit sous la forme (10-a)(10+a) = 96


Sagot :

Trouver deux nombres dont la somme vaut 20 et le produit vaut 96 il faut :

Nous sommes sous la forme x+y = S et x*y = P
On va définir d comme la demi-différence des 2 nombres : d= (x-y)/2

La contrainte s’écrit : P = (S/2 + d)*(S/2 - d)

Pour trouver on commence à faire S/2
20/2 = 10

d^2 = (S/2)^2 - P
d^2 = 10^2 - 96
d^2 = 4

d = 2

x = 10 + 2 et y = 10 - 2

Donc x = 12 et y = 8

Voici les 2 entiers relatifs dont la somme est 20 et le produit est 96

12+8 = 20
12*8 = 96

Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.