Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Réponse :
f(x) = x²/(x² - x + 1)
1) justifie que f est définie sur R
x² - x + 1
Δ = 1 - 4 = - 3 < 0 pas de racines donc x² - x + 1 > 0 ∀x ∈ R car a = 1 > 0 donc le domaine de définition est R
2) montrer que, pour tout x réel , 0 ≤ f(x) < 2
f(x) = x²/(x² - x + 1) ≥ 0 car x² ≥ 0 et x² - x + 1 > 0
étudions le signe de f(x) - 2
[x²/(x² - x + 1)] - 2 ⇔ [x²/(x² - x + 1)] - 2(x² - x + 1)/(x² - x + 1)
⇒ (x² - 2 x² + 2 x - 2)/(x² - x + 1) or x² - x + 1 > 0
⇔ - x² + 2 x - 2
Δ = 4 - 8 = - 4 ⇒ - x² + 2 x - 2 < 0 ∀x ∈ R car a = - 1 < 0
donc f(x) - 2 < 0 ⇔ f(x) < 2
Donc 0 ≤ f(x) < 2
Explications étape par étape :
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.