Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.
Sagot :
Réponse :
Bonsoir
Explications étape par étape :
f(x)=x² e^(-x+1) sur [0;-oo[ je ne vois pas pourquoi tu as exclu le 0 sachant que l'on peut l'étudier sur R
1) si x tend vers +oo, x² tend vers +oo et e^(-x+1) tend vers0+ donc f(x) tend vers 0+ (ceci en raison des croissances comparées)
si x=0 f(x)=0
2)Dérivée f'(x)=2x*e^(-x+1)-x² e^(-x+1) =(2x-x²)e^(-x+1) ceci en vertu de la dérivée d'un produit u*v et de la dérivée de e^u(x) qui u'*e^u(x)
on peut écrire f'(x)=x(2-x)e^(-x+1)
on note que f'(x)=0 pour x=0 et x=2
3) Tableau de signes de f'(x) et de variations de f(x)
x 0 2 +oo
f'(x) 0 + 0 -
f(x) 0 C f(2) D 0+
f(2)=4/e donc >1 ceci pour la question 8
4) Equation de la tangente (T) au point d'abscisse x=4: il suffit d'appliquer la formule
(T) y=f'(4)(x-4)+f(4)=(-8/e³)(x-4)+16/e³=(-8/e³)x+48/e³
5) dérivée seconde: on applique la même formule que pour f'(x)
f"(x)=(-2x+2)e^(-x+1)-(-x²+2x)e^(-x+1)= (x²-2x-2x+2)*e^(-x+1)=(x²-4x+2)e^(-x+1)
6 et 7 ) f"(x)=0 pour les solutions de x²-4x+2=0
via delta on trouve x1=2-V2 et x²=2+V2 ce sont les abscisses des points d'inflexion
si tu veux les ordonnées il faut calculer f(2-V2)et f(2+V2) je ne pense pas qu'on les demande
La courbe est convexe sur [0; 2-V2[ concave sur ]2-V2; 2+V2[ puis convexe sur ]2+V2; +oo[
8) on note que f(0)= 0 ;que f(2)>1 et que f(+oo)=0+ la fonction étant continue et monotone sur les intervalles [0; 2] et [2; +oo[, d'après le TVI f(x)=1 a une solution sur l'intervalle [0;2] et une solution sur l'intervalle [2; +oo[
9) sur [0; 2] cette solution est évidente c'est x=1 (1²*e^0=1*1=1)
sur [2, +oo[ elle est voisine de 3,5
f(3,5)=3,5²/e^2,5=1,0055*
Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.