Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.
Sagot :
bsr
-F définie par f(x)=-1 => fonction constante => droite horizontale
-F définie par f(x)=0,5x+2 => fonction affine => droite qui coupe l'axe des ordonnée en + 2
-G définie par g(x)=2x-1 => fonction affine => droite qui coupe l'axe des ordonnée en -1
-K définie par k(x)=2x => fonction linéaire => droite qui passe par l'origine du repère
Réponse :
bonsoir
Explications étape par étape :
réponses sur pièce jointe
f fonction affine telle que f(x) = ax + b
⇒ a est appelé coefficient directeur
⇒ b est appelé ordonnée à l’origine
quelques petits "trucs à savoir" pour trouver une équation de droite à partir de sa représentation graphique.
Si a > 0 alors f est strictement croissante
Si a < 0 alors f est strictement décroissante
Si a = 0 alors f est une fonction constante
droite d₁
Lecture du coefficient directeur :
→ d₁ croissante donc a > 0
La droite passe par les points O(0;0) et B(1;2).
• Calcul du coefficient directeur
Il se calcule grâce à la formule : a = (yB - yO)/(xB - xO)
a = (2 - 0)/(1 - 0)
a = + 2
• Lecture de l’ordonnée à l’origine :
La droite d₁ coupe l’axe des ordonnées au point d’ordonnée 0 .
L’ordonnée à l’origine est b = 0
→ f(x) = 2x → fonction linéaire
droite d₂
- calcul du coefficiet directeur
→ droite croissante → a > 0 qui passe par les points A(0;2) et B(2;3)
→ a = (yB - yA)/(xB - xA)
→ a = (3 - 2)/(2 - 0)
→ a = 1/2
- lecture ordonnée à l'origine
la droite coupe l'axe des ordonnées au point d'ordonnée +2
l'ordonnée à l'origine est b = +2
donc f(x) = 1/2 x + 2 pour d₂
droite d3
- lecture coefficient directeur → droite décroissante → a < 0
droite décroissante qui passe par les points A(-1;1) et B(-2;3)
→ a = (yB - yA)/(xB - xA)
→ a = (3 - 1)/(-2 + 1)
→ a = 2/-1
→ a = - 2
la droite coupe l'axe des ordonnées au point d'ordonnée -1
l'ordonnée à l'origine est b = -1
donc f(x) = -2x - 1
droite d₄
La fonction f est constante :
sa représentation graphique est une droite d'équation : y = b. → y = -1
Cette droite est parallèle à l'axe des abscisses.
voilà
j'espère que tu as compris
bonne soirée
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.