Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

Bonjour, exo un peu dur
"La suite numérique (Vn) est définie par V0 = 0 et la relation de récurrence : Pour tout entier naturel n, Vn+1 = Vn + 2n+2
1) Montrer que la suite (Vn) n'est PAS arithmétique.
2) On considère la suite des différences (Wn) définie par : Pour tout entier naturel n, Wn = Vn + 1 -Vn
2.1) Démontrer que la suite (Wn) est une suite arithmétique.
2.2) En déduire la forme explicite (en fonction de n) du terme général Wn.
3) On considère la suite des sommes (Sn) définie par : Pour tout entier naturel n, Sn = W0 + W1 + ...+ Wn.
3.1) Démontrer que pour tout n, on a : Sn = (n+1) (n+2).
3.2) Démontrer que l'on a aussi :
Sn= Vn+1 - V0 = Vn+1.
3.3) En déduire une forme explicite du terme général Vn."


Sagot :

Réponse :

1) la suite ([tex]V_{n}[/tex]) n'est pas arithmétique en effet:

[tex]V_{n+1}-V_{n}=2n+2[/tex]

or 2n+2 n'est pas constant d'ou le résultat

2.1)On a:

[tex]W_{n+1}-W_{n}=2(n+1)+2 -(2n+2)=2[/tex]

Ainsi la suite ([tex]W_{n}[/tex]) est arithmetique de raison 2

2.2)D'apres la question 2) on en deduit que :

[tex]W_{n}=W_{0}+2n=2+2n=2(n+1)[/tex]

3.1)

[tex]S_{n}= \sum\limits^n_ {k=0} \,2k+2=2\sum\limits^n_ {k=0} \,k+ \sum\limits^n_ {k=0} \,2=2\frac{n(n+1)}{2} +2(n+1)=(n+1)(n+2)[/tex]

3.2)

[tex]S_{n}= \sum\limits^n_ {k=0} \, W_{k}= \sum\limits^n_ {k=0} \, V_{k+1}-V_{k} = \sum\limits^{n+1}_ {k=1} \, V_{k}-\sum\limits^n_ {k=0} \, V_{k}= V_{n+1}-V_{0}[/tex]

3.3)On a alors

[tex]V_{n+1}=V_{0} +S_{n} =(n+1)(n+2)\\donc\\ V_{n} =n(n+1)[/tex]

Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.