Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.
Sagot :
Réponse :
Bonjour
Explications étape par étape :
Je vais essayer d'expliquer : ayuda ne m'en voudra pas ?
1)
On a donc l'équation :
7x²+bx+2=0
Le calcul du discriminant est :
Δ=b²-4ac
On a :
a=7
b=b ===>oui , "b" n'a pas de valeur pour l'instant et est une inconnue.
c=2
Donc :
Δ=b²-4ac donne :
Δ=b²-4(7)(2)
Δ=b²-56
L'équation (E) n'a aucune solution si et seulement si :
Δ < 0
<==> b²-56 < 0
<==>1*b²-56 < 0
Une expression du second degré comme 1*b²-56 avec le coeff de b² qui est positif ( c'est "1") est négative à l'extérieur des racines.
(Tu as vu en cours que f(x)=ax²+bx+c avec a > 0 est négative à l'extérieur des racines)
On cherche les racines de :
b²-56=0
b²=56
b=-√56 ou b=√56 mais √56=√( 4 x 2 x 7) donc √56=2√14
(E) n'a aucune solution pour b ∈]-∞;-2√14[ U ]2√14;+∞[
2)
Quelle que soient les valeurs de b , l'inéquation :
7x²+bx+2 > 0 aura des solutions.
Notons que la courbe de f(x)=7x²+bx+2 est orientée vers les y > 0 car le coeff de x² est positif.
Si b ∈]-∞;-2√14[ U ]2√14;+∞[
alors la courbe de : f(x)= 7x²+bx+c sera au-dessus de l'axe des x et f(x) > 0 sera toujours vérifiée.
Si b ∈ ]-2√14;2√14[
alors la courbe de : f(x)= 7x²+bx+c coupera l'axe des x en 2 points et f(x) > 0 sera vérifiée pour certaines valeurs de x.
Si b=-2√14 ou b=2√14, alors la courbe de f(x)=7x²+bx+c sera tgte à l'axe des x et dirigée vers les y > 0. Et f(x) > 0 sera vérifié sur IR-{-2√14;2√14}
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.