Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

Bonjour , pouvez-vous m'aider à résoudre ces questions ?
Une rondelle a la forme d’un disque évidé suivant le schéma ci-contre pour lequel OP
= 3OO0 .
1. Trouver la position du centre d’inertie I de la rondelle évidée.
2. On note M la masse de la rondelle évidée. Quelle masse m doit-on placer en P afin
que l’ensemble constitué de la rondelle et du point "massique" P ait O pour centre
d’inertie ?
J'espère que vous pourrez m'aider pour cet exercice. Merci beaucoup .


Bonjour Pouvezvous Maider À Résoudre Ces Questions Une Rondelle A La Forme Dun Disque Évidé Suivant Le Schéma Cicontre Pour Lequel OP 3OO0 1 Trouver La Position class=

Sagot :

Bonjour,

1) OP = 3 x OO' (si je comprends bien)

La masse de la rondelle pleine est de : M = ρ x V

avec ρ masse volumique et V volume = S x e = πR² x e  

avec e épaisseur et R = OP

Soit M = ρ x πR² x e = ρ x π(OP)² x e

De même, la masse de la partie manquante est de : m = ρ x v

avec v volume = s x e = πr² x e

Soit m = ρ x πr² x e = ρ x π(OO')² x e

On affecte un poids à chacune des 2 centres O et O' des 2 parties :

. à O, on affecte un poids P = Mg = ρ x π(OP)² x e x g

. à O', on affecte un poids virtuel p = - ρ x π(OO')² x e x g

Le signe - indiquant que cette partie est un poids manquant (un trou).

I est donc le barycentre de :

(O ; ρ x π(OP)² x e x g) et de (O' ; -ρ x π(OO')² x e x g)

Les 2 poids étant proportionnels à ρ x π x e x g, on peut simplifier :

(O ; (OP)²) et (O' ; -(OO')²)

Par définition du barycentre en vecteurs) :

OI = -(OO')²/[(OP)² - (OO')²]  x OO'

OP = 3 x OO'

⇒ en norme cette fois : OI =  -(OO')²/[9(OO')² - (OO')²] x OO' = -1/8 x OO'

2) M masse de la rondelle évidée et m masse du point massique P :

(M et m sont différents du M et du m que j'ai notés pour le 1))

O est le barycentre de (I ; M) et de (P ; m)

⇒ IO = m/(M + m) x IP

Je te laisse terminer...

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.