Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Notre plateforme offre une expérience continue pour trouver des réponses précises grâce à un réseau de professionnels expérimentés. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

Bonsoir, j'ai besoin d'aide pour cet exercice.

Soit f une fonction continue sur un intervalle I.
Soient a et b deux réels de I tels que f(a)f(b)<0.
Démontrer que l'équation f(x)=0 admet au moins une solution comprise entre a et b.

Merci d'avance.​


Sagot :

Réponse :

Explications étape par étape :

si f(a)<0  alors f(b)>0 car f(a)f(b)<0.  et donc 0 appartient à [f(a), f(b)] . f étant continue sur I d'après le théorèmes des valeurs intermédiaires   l'équation f(x)=0 admet au moins une solution comprise entre a et b. même raisonnement si   f(a)>0  alors f(b) <0 et donc  appartient à  [f(b), f(a)]. et applique TVI

Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.