Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

Je suis en première stmg et je ne comprend rien donc vous pouvez détailler votre analyse de l'exercice svp.

Résoudre les équations suivantes :

2)
[tex] {x}^{2} - 2x - 3 = 0[/tex]
3)
[tex] - {x}^{2} - 3x + 4 = 0[/tex]

4)
[tex]2 {x}^{2} - 2x + 3 = 0[/tex]


merci d'avance pour votre aide. ​


Sagot :

Svant

Réponse :

Bonjour

En STMG, on peut tracer a la calculatrice les polynomes donnés et voir les abscisses des point d'intersections de la parabole avec l'axe horizontal. Ce sont les solutions de l'equation donnée.

De maniere algébrique, on passe par la forme factorisée, quand elle existe, du polynome en cherchant une racine evidente.

Les polynomes ax² + bx + c se factorise en a(x - x1)(x - x2) avec x1 et x2 les racines du polynome. Résoudre les equations proposées revient à chercher les racines des polynomes.

On factorise ces polynomes du second degré en trouvant une racine evidente

En fait, on teste des valeurs simples de x pour trouver la racine evidente

-1 est une racine evidente de x² - 2x - 3

(-1)² - 2×(-1) = 3 = 1 + 2 - 3 = 3 - 3 = 0

Donc l'expression se factorise en

(x - (-1))×(x - x2) = (x + 1)( x - x2)

On calcule f(0) avec f(x) = x² - 2x - 3

f(0) = -3

On exprime f(0) avec  (x + 1)( x - x2)

(0+1)(0 - x2) = -x2

On en deduit -x2 = -3 donc x2 = 3

On a x² - 2 x - 3 = 0 <=> (x +1)(x-3)=0

Ainsi les solutions de l'equation x² - 2x - 3 = 0 sont x1 = -1 et x2 = 3

1 est une racine evidente de -x² - 3x + 4

posons f(x) = -x² - 3x + 4

calculons f(0)

f(0) = -0² - 3*0 + 4 = 4

Factorisons f(x)

f(x) = -1(x - 1)(x - x2)

f'0) = -1×(-1)×(-x2) = -x2

Ainsi - x2 = 4

x2 = -4

Donc f(x) =-1(x-1)(x+4)

Les solutions de l'équation  -x² - 3x + 4 = 0 sont

x1 = 1 et x2 = -4

4) en tracant f(x) = 2x² - 2x + 3 à la calculatrice on voit que la courbe ne coupe pas l'axe des x, il n'y a donc pas de solutions a l'equation 2x² - 2x + 3 = 0

Explications étape par étape :