Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

Quelqu’un peut m’aider à le faire s’il vous plaît je comprend vraiment rien … ce serait très aimable !

Quelquun Peut Maider À Le Faire Sil Vous Plaît Je Comprend Vraiment Rien Ce Serait Très Aimable class=

Sagot :

Svant

Réponse :

Bonjour

1) pour tracer d, on calcule deux couples de coordonnées

g(0) = 5*0+11 = 11

g(1)=5*1+11=16

La droite passe par (0;11) et par (1;16)

Place les points dans le repère puis trace la droite passant par ces deux points.

2a)

P et d semblent sécantes en (-1; 6) et en (2; 21)

2b)

Etudions le signe de f(x) - g(x)

f(x) - g(x) = (6x²-x-1)-(5x+11)

f(x) - g(x) = 6x² - 6x - 12

f - g est un polynome du second degré

Δ=(-6)²-4×6×(-12)

Δ = 324

Ce polynome admet deux racines

x1 = (6-√324)/12 = -1

x2 = (6+√324)/12 = 2

On a donc le tableau de signe suivant

x          | -∞    -1      2     +∞

(f-g)(x)  |    +    0  -  0  +

f(x)-g(x) est positif sur ]-∞,-1] et sur [2;+∞[ donc

Cf est au dessus de d sur ]-∞,-1] et sur [2;+∞[

f(x)-g(x) est négatif sur [-1; 2] donc Cf est en dessous de d sur [-1; 2]

3a) En tracant la parallèle à d ne passant qu'une seule fois par P on a une droite semblant passer par x=1/2

3b) On cherche une droite de coefficient directeur égale à 5 et ne coupant qu'une fois la parabole.

Cette droite Δ a une equation de la forme y = 5x + p avec p son ordonnée à l'origine.

Résolvons

f(x) - (5x+p)= 0

6x² - x - 1 - 5x - p = 0

6x² - 6x - 1 - p = 0

La droite et la parabole n'ont qu'un point d'intersection si cette équation n'a qu'une solution. Cherchons p pour que le discriminant de l'équation précédente soit nul.

b² - 4ac = 0

(-6)² - 4×6×(-1-p)=0

36 + 24 + 24p = 0

24 p = -60

p = -2.5

Ainsi la droite Δ ne coupant qu'une seule fois la parabole P et étant parallèle à la droite d a pour équation :

Δ : y = 5x - 2.5

En utilisant la valeur de p trouvée, résolvons f(x) - y = 0 pour trouver les coordonnées du point G

6x² - x - 1 - (5x - 2.5) = 0

6x² - 6x + 1.5 = 0

Δ = 0

L'équation n'admet qu'une solution

x0 = 6/(2*6) = 0.5

et y0 = 5*0.5 -2.5 = 0

Ainsi G(0,5 ; 0)

Les résultats confirment les conjectures émises en 3a)

3c) La droite Δ est appelée droite tangente à la courbe représentative de la fonction f.

Explications étape par étape :

View image Svant
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.