Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.
Sagot :
Salut,
Voici la réponse à ton exercice.
On va utiliser la formule suivante.
[tex]\text{Volume}=\pi\times\text{rayon de la base}^2\times\text{hauteur}[/tex], dans laquelle les grandeurs sont exprimées dans les unités suivantes :
- [tex]\text{Volume}[/tex] : en [tex]m^3[/tex] ;
- [tex]\text{rayon de la base}[/tex] : en [tex]m[/tex] ;
- [tex]\text{hauteur}[/tex] : en [tex]m[/tex].
Ici, le volume est en [tex]hL[/tex]. Il faut le convertir en [tex]m^3[/tex].
[tex]1 \,L = 1\, dm^3[/tex] donc [tex]1\, hL=100\,\,dm^3=0,1\,m^3[/tex].
Donc : [tex]5\,500\,hL=5\,500\times0,1\,m^3=550\,m^3[/tex].
De plus, [tex]\text{rayon de la base} = \text{diametre de la base} : 2=10\,m:2=5\,m[/tex].
A l'aide la formule de départ, on déduit que :
[tex]\text{hauteur}=\frac{\text{Volume}}{\pi\times\text{rayon de la base}^2}=\frac{550\,m^3}{\pi\times(5\,m)^2}=\frac{550\,m^3}{25\pi\,m^2}\approx7\,m[/tex].
Conclusion : La hauteur du cylindre est de [tex]7\,m[/tex].
Je reste disponible si besoin. A+
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.