Bonjour j'ai un devoir à rendre en math et je n'y arrives pas :(. Quelqu'un pourrait-il m'aider s'il vous plait . Alors voici l'exercice :
La population mondiale était de 3.02 milliards d'habitants en 1960 et 6.09 milliards en 2000.
A) Le modèle linéaire :
1) Calculer l'accroissement absolu moyen par décennie du nombre d'habitants de 1960 à 2000.
2) Dans ce premier modèle, on suppose que cet accroissement absolu moyen reste constant pour les décennies à venir.
On note (Un) le nombre d'habitants (en milliards), n décennies après 1960.
Ainsi U0 = 3.02.
a- Justifier l'appellation de modèle linéaire.
b- Exprimer (Un) en fonction de n.
c- Si ce modèle restait fiable sur le long terme, au bout de combien de décennies le monde compterait-il plus de 8 milliards d'habitants ?
B) Le modèle exponentiel :
Dans ce second modèle, on suppose que l'accroissement relatif entre deux décennies reste constant, égal à 18%.
On note (Vn) le nombre d'habitants, n décennie après 1960.
Ainsi V0 = 3.02
1) Justifier l'appellation de modèle exponentiel .
2) Exprimer (Vn) en fonction de n.
C) Comparaison des deux modèles :
En 2010, la terre comptait 6.8 milliards d'habitants. Quel est le modèle le plus proche de la réalité ?
Merci d'avance :)
A) Le modèle linéaire :
1) Calculer l'accroissement absolu moyen par décennie du nombre d'habitants de 1960 à 2000.
2) Dans ce premier modèle, on suppose que cet accroissement absolu moyen reste constant pour les décennies à venir.
On note (Un) le nombre d'habitants (en milliards), n décennies après 1960.
Ainsi U0 = 3.02.
a- Justifier l'appellation de modèle linéaire.
b- Exprimer (Un) en fonction de n.
c- Si ce modèle restait fiable sur le long terme, au bout de combien de décennies le monde compterait-il plus de 8 milliards d'habitants ?
B) Le modèle exponentiel :
Dans ce second modèle, on suppose que l'accroissement relatif entre deux décennies reste constant, égal à 18%.
On note (Vn) le nombre d'habitants, n décennie après 1960.
Ainsi V0 = 3.02
1) Justifier l'appellation de modèle exponentiel .
2) Exprimer (Vn) en fonction de n.
C) Comparaison des deux modèles :
En 2010, la terre comptait 6.8 milliards d'habitants. Quel est le modèle le plus proche de la réalité ?