Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonjour, j'ai besoin de votre aide pour cet exercice. En vous remerciant par avance.Dire si l’affirmation est vraie ou fausse. Justifier. Lorsqu’elle est
fausse, la corriger pour qu’elle devienne vraie.
1) Un nombre positif est toujours inférieur à son carré.
2) L’inverse d’un nombre positif est négatif.
3) L’opposé de l’inverse d’un nombre réel non nul est égal à l’inverse de
l’opposé de ce nombre.
4) Le carré de l’opposé de l’inverse d’un nombre réel non nul est égal à
l’inverse de l’opposé du carré de .
5) Si deux réels positifs non nuls sont rangés dans un certain ordre, leurs
inverses sont rangés dans le même ordre


Sagot :

aclny

Bonjour,

1) Un nombre positif est toujours inférieur à son carré = VRAI

Car la fonction [tex]f(x)= x^{2}[/tex] est strictement croissant sur R.

2) L'inverse d'un nombre positif est négatif = FAUX

On peut se baser sur la fonction inverse qui est strictement positive sur ]0 ; + ∞ [ ou bien utiliser un contre exemple :

[tex]f(x) = \frac{1}{x}\\si, x=1\\1>0\\f(1) = 1[/tex]

La proposition est donc fausse car l'inverse de ce nombre positif est positif.

3) VRAI

l'opposé de l'inverse d'un nombre : [tex]\frac{-1}{x}[/tex]

l'inverse de l'opposé = [tex]\frac{-1}{x}[/tex]

5) FAUX

Car la fonction inverse est strictement décroissante sur R*

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.