Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

Bonjour, désolé de vous déranger mais j'ai des difficultés sur un exercice que je dois faire pour demain. Je suis en terminale spé math. Voici l'énoncé:
Pour tout entier naturel n, Sn=∑ pour k variant de 0 à n [tex]\frac{1}{\sqrt[]{k+1} }[/tex] = 1 + [tex]\frac{1}{\sqrt{2} }[/tex] + ... + [tex]\frac{1}{\sqrt{n+1} }[/tex].
Justifier que pour tout entier naturel k, et pour tout entier naturel n, si k ≤ n alors [tex]\frac{1}{\sqrt{k+1} }[/tex] ≥ [tex]\frac{1}{\sqrt{n+1} }[/tex] .
En deduire que la suite (Sn) diverge vers +∞

Merci d'avance.


Sagot :

Réponse :

Explications étape par étape :

Bonjour,

Voici la réponse en pièce-jointe !

En espérant t'avoir aidé, n'hésite pas à poser des questions si besoin.

View image olivierronat