Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour, désolé de vous déranger mais j'ai des difficultés sur un exercice que je dois faire pour demain. Je suis en terminale spé math. Voici l'énoncé:
Pour tout entier naturel n, Sn=∑ pour k variant de 0 à n [tex]\frac{1}{\sqrt[]{k+1} }[/tex] = 1 + [tex]\frac{1}{\sqrt{2} }[/tex] + ... + [tex]\frac{1}{\sqrt{n+1} }[/tex].
Justifier que pour tout entier naturel k, et pour tout entier naturel n, si k ≤ n alors [tex]\frac{1}{\sqrt{k+1} }[/tex] ≥ [tex]\frac{1}{\sqrt{n+1} }[/tex] .
En deduire que la suite (Sn) diverge vers +∞

Merci d'avance.

Sagot :

Réponse :

Explications étape par étape :

Bonjour,

Voici la réponse en pièce-jointe !

En espérant t'avoir aidé, n'hésite pas à poser des questions si besoin.

View image olivierronat
Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.