Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.
Sagot :
Bonjour,
1) Pour déterminer la limite, il convient de terminer la limite de x - 4ln (x) puisque 4 est une constante et que 3/x tend vers 0
on a lim → +∞ de x - 4ln (x) = lim→+∞ de x(1 - 4ln (x)/x) or par croissance comparée lim → ln (x)/x = 0 d'où lim → +∞ de x - ln (x) = lim→+∞ x = +∞ d'où lim → + ∞ de x + 4 - 4ln(x) - 3/x = +∞
2) dérivée de -3/x = -(-3/x² ) = 3/x²
dérivée de x = 1
dérivée de 4 = 0
dérivée de -4ln(x) = -4 × 1/x = -4/x
donc f'(x) = 1 - 4/x + 3/x²
f'(x) = 1 × x² - (4 × x)/(x × x) + 3/x² = (x² - 4x + 3)/x²
Réponse :
Explications étape par étape :
■ f(x) = x + 4 - 4Lnx - (3/x) sur IR+*
■ dérivée f ' (x) = 1 - (4/x) + (3/x²)
= (x² - 4x + 3)/x²
= (x-1)(x-3)/x²
cette dérivée est négative pour 1 < x < 3
la fonction f est donc décroissante pour 1 < x < 3 .
■ comportement de la fonction f à l' infini :
Lim f(x) = Lim x + 4(1 - Lnx) = Lim x = +∞
La courbe admettra comme asymptote oblique
la droite d' équation y = x .
■ tableau :
x --> 0 1 2 3 6 10 100 1000 10ooo +∞
f(x) --> ║ 2 1,73 1,6 2,33 4,5 85,5 976 9967 +∞
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.