Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Bonsoir Une échelle de 6 m de hauteur
est adossée à un mur perpen-
diculaire au sol. Le haut de
l'échelle est posé exactement
au sommet H du mur et le pied
P de l'échelle est à 2 m du mur.
D Calculer la hauteur exacte du
mur, puis sa valeur arrondie au
cm.
Pouvez vous repondre a cet question svpp


Bonsoir Une Échelle De 6 M De Hauteur Est Adossée À Un Mur Perpen Diculaire Au Sol Le Haut De Léchelle Est Posé Exactement Au Sommet H Du Mur Et Le Pied P De Lé class=

Sagot :

Réponse :

La valeur exacte est[tex]\sqrt{32}[/tex] mais arrondi au centième celà donne 5,5 cm

Explications étape par étape :

Cherchons la longueur BH

On sait que : HB est un triangle rectangle en B. BP = 2m  PH = 6m

Or: J'applique le théorème de Pythagore.

Donc :  [tex]HB^{2}[/tex] + [tex]PB^{2}[/tex] = [tex]HP^{2}[/tex]

Soit : [tex]HP^{2}[/tex] - [tex]PB^{2}[/tex] = [tex]HB^{2}[/tex]

[tex]6^{2}[/tex] - [tex]2^{2}[/tex] =  [tex]HB^{2}[/tex]

36 - 4 =  [tex]HB^{2}[/tex]

32 =  [tex]HB^{2}[/tex]

HB = [tex]\sqrt{32}[/tex] ou - [tex]\sqrt{32}[/tex]

Or : une longueur est toujours positive

Donc HB = [tex]\sqrt{32}[/tex]

HB ≈ 5,656854249

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.