Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Découvrez la facilité de trouver des réponses fiables à vos questions grâce à une vaste communauté d'experts. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

Bonsoir, j'ai un DS demain et le prof nous a envoyer un devoir libre, mais y'a des choses dedans que je n'ai pas compris:

1) Mq: (∀n ∈ IN) 1 + 4 + 7 + ... + (3n+1) = [tex]\frac{1}{2} (3n^2 +5n + 2)[/tex]

J'ai procédé comme ceci:
Pour n = 0, P est vrai
On suppose que P(n) est vrai et montrons que P(n+1) est vrai

On a:
1 + 4 + 7 + ... + (3n+1) = [tex]\frac{1}{2} (3n^2 +5n + 2)[/tex]
= 1 + 4 + 7 + ... + (3n+1) = [tex]\frac{1}{2} n(3n+5)+1[/tex]

Donc
1 + 4 + 7 + ... + (3n+1) + (3(n+1)+1) = [tex]\frac{1}{2} (3(n+1)^2 +5(3n+1) + 2)[/tex]
1 + 4 + 7 + ... + (3n+1) + (3(n+1)+1) = [tex]\frac{1}{2}(n(3n+11)+10)[/tex]

(je suis pas sur si cette récurrence est vrai ou pas)

ce qui vrai

2) Résoudre dans IR l'équation 2|x-1| + 3|x+1| = 5

3) C'est juste une question bête mais si x appartient à [1; +infini[ quel est l'encadrement de 1-xy

Sagot :

je sais pas mais télécharge l'application 'photo math' normalement ça donne toutes les réponses avec les explications pour comprendre

Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.