Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Bonjour pouvez vous m'aider, s'il vous plait

n étant un entier naturel. On donne A = 4 puissance n+1 + 4 puissance n / (2 puissance n) au carré

1.Calculer A pour n = 0 ; n = 2 ; puis n = 5. Que peut-on conjecturer ?

2.Vérifier l’égalité 4n × 4 = 4n+1 et démontrer la conjecture faite à la question 1.


Sagot :

Bonjour,

[tex]A = \frac{4 {}^{n + 1} + 4 {}^{n} }{(2 {}^{n} ) {}^{2} } [/tex]

Pour n = 0

A = (4¹ + 1 )/(1)² = 5

pour n = 2

A =( 4³ + 4²)/(2²)² = 5

pour n = 5

A = (4⁶ + 4⁵)/(2⁵)² = 5

On peut conjecturer que A = 5 peut importe la valeur de n

[tex]A = \frac{4 {}^{n + 1} + 4 {}^{n} }{(2 {}^{n} ) {}^{2} } = \frac{4 {}^{n + 1} + 4 {}^{n}}{4 {}^{n} } = \frac{4 {}^{n + 1} }{4 {}^{n} } + \frac{4 {}^{n} }{4 {}^{n} } = 4 + 1 = 5[/tex]

La conjoncture est démontrée

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.