Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

bonjour pouvez-vous m'aider svp​

Bonjour Pouvezvous Maider Svp class=

Sagot :

Bonjour, voici la réponse à ton exercice :

Volume d'une pyramide

On rappelle d'abord la formule de calcul d'un volume d'une pyramide  :

→ [tex]Vpy\:=\:\frac{1}{3} * Ab * h[/tex]

Avec Ab : Aire de la base

Et h : hauteur

On doit donc d'abord calculer l'aire de la base de la pyramide, tel que :

→ [tex]Ac = c * c[/tex]

Avec c : côté du carré

⇒ 34 * 34 ou 34²

= 1156 m²

Puis enfin le volume, tel que :

[tex]\frac{1}{3}[/tex] * 1156 * 21

= 8092 m³

Longueur SH

Pour calculer la côté SH, il faut d'abord savoir dans quel triangle il se trouve. On peut facilement remarquer qu'il fait parti du triangle SHO, dont SO est la base de la pyramide, donc un triangle rectangle. On pourra donc appliquer le théorème de Pythagore, tel que :

Hypoténuse² = Côté Adjacent² + Côté opposé²

Or, la seule donnée que l'on a est celle du côté adjacent SO. Il nous manque donc HO pour calculer SH. L'énoncé nous indique que les côtés de la base font chacun 34 m. HO est considéré comme allant d'un côté du carré jusqu'à la base, donc au milieu du carré pour celui-ci.

Donc HO = [tex]\frac{34}{2}[/tex] = 17 m.

On peut dès à présent appliquer le théorème de Pythagore.

SH² = SO² + HO²

SH² = 21² + 17²

SH² = 441 + 289

SH² = 730

SH = [tex]\sqrt{730}[/tex]

SH = 27,01851 m

Rappelons que la question nous impose de donner le résultat au dm près.

On convertit donc : m → dm (diviser par 10)

⇒ [tex]\frac{27,01851}{10}[/tex]

= 2,7 dm

Aire de la surface de la pyramide

Maintenant qu'on a SH, et on sait que les faces latérales sont des triangles isocèles, on applique la formule de calcul de l'aire d'un triangle, tel que :

[tex]A={\frac {b\times h}{2}}[/tex]

= 34 * 27,02 (arrondi au centième près)

= 918,68 / 2

= 459,34 m²

Sachant que la surface totale de la pyramide, c'est 4 faces latérales, on multiplie la face latérale qu'on a trouvé par 4, tel que :

4 * 459,34

= 1837,36 m² !

On en conclut donc que l'aire de la surface totale de la pyramide est de 1837,36 m².

En espérant t'avoir aidé au maximum !

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.