Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

Bonjour j'ai un devoir de maths et je bloque sur le premier exercice :

 

Justifier les propriétés suivantes en utilisant la division euclidienne .

    a. Si le nombre n est pair , alors il existe un nombre entier p tel que n=2p .

    b. S'il existe un nombre entier p tel que n =2p , alors n est un nombre pair .

    c. Si le nombre n est impair , alors il existe un nombre entier p tel que n =2p+1 .

    d. S'il existe un nombre entier p tel que n=2p+1 , alors n est un nombre impair .

 

Merci a tous ceux qui m'aide .



Sagot :

n divise par 2 donne le reste 0 donc p est le quotient  :n=2*p

 

si n=2p alors par définnition n est pair

 

n divise par 2 donne le reste 1 donc p est le quotient  :n=2*p+1

 

si n=2p+1 alors par definition n est impair

 

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.