Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonjour j'ai un devoir de maths et je bloque sur le premier exercice :

 

Justifier les propriétés suivantes en utilisant la division euclidienne .

    a. Si le nombre n est pair , alors il existe un nombre entier p tel que n=2p .

    b. S'il existe un nombre entier p tel que n =2p , alors n est un nombre pair .

    c. Si le nombre n est impair , alors il existe un nombre entier p tel que n =2p+1 .

    d. S'il existe un nombre entier p tel que n=2p+1 , alors n est un nombre impair .

 

Merci a tous ceux qui m'aide .



Sagot :

n divise par 2 donne le reste 0 donc p est le quotient  :n=2*p

 

si n=2p alors par définnition n est pair

 

n divise par 2 donne le reste 1 donc p est le quotient  :n=2*p+1

 

si n=2p+1 alors par definition n est impair

 

Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.