Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.
Sagot :
Réponse :
Explications étape par étape :
a)un+1= 1 /(n + 1)^2 - 1
calculons : un+1/un - 1 = 1 /[ (n+1)^2 - 1]x [n^2 -1 / 1 ] - 1
car un+1/un= un+1x(1/un) 1 / [n^2 +2n +1 -1]x [n^2 -1 ] - 1
1/[ n^2 + 2n ]x [n^2 - 1] - 1
n^2 -1 / [n^2 + 2n ] - 1 den com:n^2 +2n
n^2 - 1 - (n^2 + 2n) / den com
n^2 - 1 - n^2 - 2n/ den com
-1 -2n /n^2 +2n
n>0 donc n^2 +2n>0 et -2n<0 donc -1 -2n<0 le numérateur est toujours négatif,le dénominateur est toujours positif donc le quotient est négatif
donc un+1/un - 1 <0 soit un+1/un <1 alors un+1 < un
la suite (un )est décroissante.
b)un+1=4^n+2+1 / 3^n+1
exprimons un+1 / un =[ 4^n+2+1 /3^n+1 ] /[ 4^n+2 / 3^n] or a/b= ax b^(-1)
=[4^n+2+1 / 3^n+1 ] x [3 ^n / 4^n+2 ]
=[4^n+2+1 x 3^n] / [3^n+1 x 4^n+2]
on peut simplifier les 2 termes du quotient par 4^n+2 et par 3^n
on obtient: un+1 / un = 4 / 3
le quotient est supérieur à 1 donc un+1 > un: la suite( un) est croissante.
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.