Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

bonjour j'ai un devoir à rendre pour vendredi et je comprends rien :
«Une citerne pleine de 40 mètres de haut et de 20 mètres de diamètre est reliée par un robinet cylindrique de longueur 5 m et de diamètre 4 mètres à une citerne vide de même hauteur que l'autre mais de 12 mètres de diamètre. » 1°) En détaillant votre démarche, même non-aboutie, déterminer à quelle hauteur le niveau d'eau va se stabiliser dans les deux citernes. Coup de pouce : le volume d'un cylindre est donné par la formule Vcvlindre = π*r^2*h ​

Sagot :

Réponse:

Il faut diviser les diamètres par 2 pour avoir le rayon de chaque citerne.

20÷2=10 ; 4÷2=2; 12÷2=6

Explications étape par étape:

volume première citerne: pix10x10x40 = 12566,37 m3 ce est le volume de départ

volume robinet de liaison : pix2x2x5=62,83 m3

cette liaison entre les 2 citernes sera toujours pleine donc il faut déduire ce volume du volume à partager :

12566,37 - 62,83= 12 503,54 M3 à diviser dans deux cylindre de différent diamètre et volume.

Les volumes seront à la même hauteur dans chaque citerne , mettre en équation les formules des deux citernes avec h en inconnue.

pix10x10xh + pix6x6xh = 12 503,54

314,15h + 113,09h = 12503,54

427,24h = 12503,54

h=12503,54/427,24

h= 29,26 mètres dans chaque citernes

verif: pix10x10x 29,26 = 9192,30 m3 1ere citerne

+ pix6x6x 29,26 = 3309,22 m3 2e citerne =12502 m3 de depart (arrondie pour pi)

+ liaison robinet=62,83=12565 m3 de départ. ( arrondie suite aux calcul de pi)

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.