Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.
Sagot :
Réponse :
bonsoir
Explications étape par étape :
le parcours : AB + BC + CD + DE
- AB = 300m
- longueur BC = 500m
ABC triangle rectangle en A
donc Pyhtagore dit le carré de son hypoténuse est égal à la somme des carrés des 2 autres cotés
hypoténuse d'un triangle rectangle se trouve en face l'angle droit (et est toujours la longueur la plus longue)
dans ABC rectangle en A l'hypoténuse est BC donc
⇒ BC² = AB² + AC²
⇒BC² = 300² + 400²
⇒ BC² = 90 000 + 160 000
⇒ BC² = 250 000
⇒BC = √ 250 000
⇒BC = 500 m
- longueur CD = 1250 m
on admet que (AE) et (BD) sont sécantes en C
que (AB) // (DE)
donc les points A;C;E et B;C;D sont alignés et dans le meme ordre
les triangles ABC et CDE sont semblables et les mesures de leurs cotés sont proportionnelles 2 à 2
Thalès nous dit que :
CA / CE = CB / CD = AB / DE
on veut calculer CD et on connait CA = 400 m ; CE = 1000m et CB = 500m
⇒ CA /CE = CB / CD
⇒ CA x CD = CE x CB
⇒ CD = CE x CB / CA
⇒ CD = 1000 x 500 / 400
⇒CD = 1250 m
- longueur de DE = 750m
CA/CE = 400/1000 = 2/5
CB/CD = 500/1250 = 2/5
donc AB/DE = 2/5
⇒300 / CD = 2/5
⇒ CD = 300 x 5 / 2
⇒ CD = 1500 /2
⇒ CD = 750 m
- la longueur du parcours :
300 + 500 + 1250 + 750 = 2800 m
la longueur du parcours ABCDE est de 2800m
bonne soirée
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.