Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.
Sagot :
Bonjour,
1. Soit a et b ∈ R tels que z = a + ib, affixe du point M.
Si M appartient à l'axe des réels privés du point d'abscisse 4, cela signifie que b = 0 et a ∈ R\{4}
On a alors z' = z/(z-4) = a/(a-4) ∈ R donc M' appartient aussi à l'axe des réels.
2. Soit z = 2 - 2i, on a alors :
z' = (2-2i)/(2-2i-4) = (2-2i)/(-2-2i) =(1-i)/(-1-i) = (-1+i)/(1+i)
z' = (-1+i)(1-i) / (1+i)(1-i) (On multiplie en haut et en bas par le conjugué)
Donc z' = (-1 +i +i +1) / (1 - i+i + 1) = 2i/2 = i
Donc z' est un nombre imaginaire pur donc M' appartient à l'axe des imaginaires purs.
3. a. Soit z = x + iy, on a alors :
z' = (x + iy) / (x + iy - 4)
z' = (x + iy)(x-4 - iy) / (x-4 + iy)(x-4 - iy)
z' = (x(x-4) -ixy +ixy -4iy + y²) / ((x-4)² -ixy +4iy + ixy -4iy + y²)
z' = (x(x-4) + y² -4iy) / (((x-4)² + y²)
z' = (x(x-4) + y²)/ (((x-4)² + y²) + i(-4y/ ((x-4)² + y²))
b. Si M appartient à l'axe des réels, alors z est réel c'est à dire que pour z = x + iy, y = 0.
Si y = 0, on a z' = (x² - 4x) / (x² -8x + 16) = x(x-4)/(x-4)² = x/x-4. Donc z' est réel, donc M’ appartient aussi à l’axe des réels.
Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.