Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Notre plateforme de questions-réponses offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonjour quelqu’un peut m’aider à faire cet exercice s’il vous plaît
Exercice 4 :
Dans le plan complexe, à tout point M d’affixe z différent de 4, on associe le point M’ d’affixe z’ défini par z’= z/z-4 .
1. Prouver que si M appartient à l’axe des réels privé du point d’abscisse 4, alors M’ appartient aussi à l’axe des réels.
2. Prouver que si M a pour affixe 2-2i , alors M’ appartient à l’axe des imaginaires purs.
3. a. Soit z=x+iy. Déterminer, en fonction de x et de y, la forme algébrique de z’.
b. Retrouver le résultat de la question 1.


Sagot :

Aeneas

Bonjour,

1. Soit a et b ∈ R tels que z = a + ib, affixe du point M.

Si M appartient à l'axe des réels privés du point d'abscisse 4, cela signifie que b = 0 et a ∈ R\{4}

On a alors z' = z/(z-4) = a/(a-4) ∈ R donc M' appartient aussi à l'axe des réels.

2. Soit z = 2 - 2i, on a alors :

z' = (2-2i)/(2-2i-4) = (2-2i)/(-2-2i) =(1-i)/(-1-i) = (-1+i)/(1+i)

z' = (-1+i)(1-i) / (1+i)(1-i)  (On multiplie en haut et en bas par le conjugué)

Donc z' = (-1 +i +i +1) / (1 - i+i + 1) = 2i/2 = i

Donc z' est un nombre imaginaire pur donc M' appartient à l'axe des imaginaires purs.

3. a. Soit z = x + iy, on a alors :

z' = (x + iy) / (x + iy - 4)

z' = (x + iy)(x-4 - iy) / (x-4 + iy)(x-4 - iy)

z' = (x(x-4) -ixy +ixy -4iy + y²) / ((x-4)²  -ixy +4iy + ixy -4iy + y²)

z' = (x(x-4) + y² -4iy) /  (((x-4)² + y²)

z' = (x(x-4) + y²)/  (((x-4)² + y²) + i(-4y/ ((x-4)²  + y²))

b. Si M appartient à l'axe des réels, alors z est réel c'est à dire que pour z = x + iy, y = 0.

Si y = 0, on a z'  = (x² - 4x) / (x² -8x + 16) = x(x-4)/(x-4)² = x/x-4. Donc z' est réel, donc M’ appartient aussi à l’axe des réels.

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.