Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.
Sagot :
Bonjour,
1. Soit a et b ∈ R tels que z = a + ib, affixe du point M.
Si M appartient à l'axe des réels privés du point d'abscisse 4, cela signifie que b = 0 et a ∈ R\{4}
On a alors z' = z/(z-4) = a/(a-4) ∈ R donc M' appartient aussi à l'axe des réels.
2. Soit z = 2 - 2i, on a alors :
z' = (2-2i)/(2-2i-4) = (2-2i)/(-2-2i) =(1-i)/(-1-i) = (-1+i)/(1+i)
z' = (-1+i)(1-i) / (1+i)(1-i) (On multiplie en haut et en bas par le conjugué)
Donc z' = (-1 +i +i +1) / (1 - i+i + 1) = 2i/2 = i
Donc z' est un nombre imaginaire pur donc M' appartient à l'axe des imaginaires purs.
3. a. Soit z = x + iy, on a alors :
z' = (x + iy) / (x + iy - 4)
z' = (x + iy)(x-4 - iy) / (x-4 + iy)(x-4 - iy)
z' = (x(x-4) -ixy +ixy -4iy + y²) / ((x-4)² -ixy +4iy + ixy -4iy + y²)
z' = (x(x-4) + y² -4iy) / (((x-4)² + y²)
z' = (x(x-4) + y²)/ (((x-4)² + y²) + i(-4y/ ((x-4)² + y²))
b. Si M appartient à l'axe des réels, alors z est réel c'est à dire que pour z = x + iy, y = 0.
Si y = 0, on a z' = (x² - 4x) / (x² -8x + 16) = x(x-4)/(x-4)² = x/x-4. Donc z' est réel, donc M’ appartient aussi à l’axe des réels.
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.