Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

bonjour, quelqu'un peut m'expliquer comment calculer les points d'intersections de deux paraboles grâce aux polynomes du second degrès ?
merci d'avance

Sagot :

bjr

voici la méthode

Soient deux paraboles P1 et P2

équation de P1 :  y = x² -3x + 1   (1)

équation de P2 :  y = -2x² + x    (2)

(1) et (2) constituent un système de deux équations à deux inconnues.

on obtient par substitution

x² -3x + 1 = -2x² + x  (3)

on résout cette équation d'inconnue x

puis on en déduit les ordonnées correspondantes

les cas possibles

• (3) a deux solutions distinctes

            les paraboles se coupent en deux points

• (3) a une solution double

             les paraboles sont tangentes

• (-3) n'a pas de solution,

les paraboles n'ont aucun point commun

• Si les coefficient de x² sont les mêmes

( par exemple P1 : y = 3x² + 3  et P2 ; y = 3x² - x + 2

l'équation 3x² + 3 = 3x² - x + 2 est de degré 1

 les paraboles ont un seul point commun