Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

Bonsoir,

 

Apres m'etre creusée la tete plus d'une heure, je demande votre aide. Alors voila l'énnoncé :

Soit un triangle ABC rectangle en A tel que AB=3 et AC=x.

On designe par I le point du segment [AB] tel que BI=1/3BA. La parallele a la droite (AC) passant par I coupe le segment [BC] en J. La parallele a la droite (BC) passant par I coupe le segment [AC] en K.

1) Exprimer IJ et Ak en fonction de x.

2) Déterminer x pour que l'aire du parallélogramme IJCK soit égale a 100.

 

Je vous remerci



Sagot :

Coucou, 

 

On considère le triangle ABC avec la parallèle IJ.

D'après le théorème de Thalès, on a :                                                                                                 [tex]\frac{BI}{BA} = \frac{BJ}{BC} = \frac{IJ}{AC}[/tex]                                                                                   or BI=1/3 BA =(1/3)*3 =1 et donc AI = AB-BI =2                                                                                            

                                                                                                                                                                             

[tex] \frac{1}{3} = \frac{BJ}{BC} = \frac{IJ}{x}\\\\\\ IJ = \frac{x*1}{3} = \frac{x}{3}[/tex]                                                    

 

On considère le triangle ABC avec la parallèle JK :

D'après le théorème de Thalès, on a :                                                                                                   [tex]\frac{AK}{AC} = \frac{AI}{AB} = \frac{IK}{BC}\\\\\\\ \frac{AK}{x} = \frac{2}{3} \\\\AK =\frac{2x}{3}[/tex]                                                                                                                                                                            2)Je ne sais pas trop si c'est ça, mais je te proposerais la chose suivante :

Aire de  IJCK = Aire ABC - (Aire AKI + Aire IBJ) = 100

et comme AIK est rectangle en A, et IJB est rectangle en I (puisque IJ est la // de AC)

 

Un triangle rectangle est la moitié d'un rectangle

Aire ABC = (AB *AC)/2 = (3*x/)2= 3/2x

Aire AKI =  (AK * AI)/2 =[(2/3x)*2]/2 = 2/3x

                                                                                 

Aire BIJ  = (BI*IJ)/2 = [1*(x/3)]/2 = x/6         

 

Il est possible que ce ne soit pas ça pour la 2) , je n'en suis vraimment pas sur !  

 

J'espère que j'ai pu t'aider

Voilà ! ;)

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.