Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Bonjour , aidez-moi s’il vous plaît je n’arrive pas

Bonjour Aidezmoi Sil Vous Plaît Je Narrive Pas class=

Sagot :

Bonjour  

Ce qu'on sait dans notre cours :  Une droite est une fonction affine qui s'écrit   y = ax+b

ou "a" est le coefficient directeur de la droite, qui représente la pente de cette droite.  

"b"  est l'ordonnée à l'origine.  C'est à dire le point ou la droite coupe l'axe des ordonnées.  Ce qui veut dire quand  "x" = 0  alors  y = b.  

Maintenant on sait aussi que si une droite est  croissante  ( si elle va du bas à droite vers en haut à gauche, le coefficient directeur "a " est positif.

Si la droite part d'en haut à gauche  et  va vers en bas  à droite, alors  "a" est négatif.  

Maintenant on peut aussi lire des coordonnées sur le graphique afin de nous aider  à définir notre droite.

Pour D1 et  D2 , on voit que lorsque  "x" = 0 , les droites coupent l'axe des ordonnées en 2.  

Donc pour les deux droites ,  b =  2  

Passons maintenant à  la définition de la droite  D1

Sur le graphique, on voit  que la droite  D1  coupe l'axe des abscisses en  -4  

ce qui veut dire  que  f (-4)  = -4  

c'est à dire :     f(-4)  : a*(-4) +2 =  -4  

                         f(-4)  :  -4a +2 = -4

                          f(-4)  :  -4a = -4-2

                          f(-4)  :  -4a =  -6  

                                         a =  -6/-4

                                           a =  3/2  

donc D(1) a pour équation  :   f(x) =  3/2 X +2  

Pour D(2) ,  on fait pareil. In voit que  f(3.5) =  0  

                                                             c'est à dire :    a* (3.5) +2 = 0

                                                                                        3.5a = -2

                                                                                             a =   -2/3.5

D(2) =  -2/3.5 X +2  

Vérifions maintenant les point d'intersection, c'est à dire le  ou la  valeur de  x pour laquelle   D1 -D2 = 0  

                   ( 3/2 X +2  ) -  ( -2/3.5 X +2 )  =  0

                    3/2 X +2  + 2/3.5 X -2 =  0  

                     3/2 X +2/3.5  X = 0

                    x  ( 3/2 +2/3.5 ) = 0  

                 (   x *      ( 3/2 +2/3.5 )  )    /  ( 3/2 +2/3.5 )  =     0   / ( 3/2 +2/3.5 )  

                                 x =  0

On sait donc que les deux droites se coupent pour  x = 0  

calculons maintenant  l'image de   0  pour savoir où se coupent les deux droites    

D1 =   3/2X +2    si x =  0  alors    D1  (0) =     3/2 (0)  +2   = 2  

D2 =  - 2/3.5 X +2  si x = 0  alors   D2 (0)       =   -2/3.5 (0)  +2 =  2

Les droites D1 et  D2 se coupent au point   { 0 ; 2 }  

Comme D1 et D2 sont des droites, on sait que ce point d'intersection est unique.

   

                                 

                   

Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.