Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonjour svp aider moi à résoudre cet exercice .On considère la fonction affine f dont on connait
l'image de deux nombres réels :
f(1) = 1 et f(5) = -7.
1. Démontrer que, pour tout réel x, on a :
f(x) = -2x + 3.
2. Dresser le tableau de variation de la fonction
en justifiant
3. Tracer la courbe de la fonction f dans un repère
orthonormé.
4. Résoudre graphiquement l'inéquation:
f(x) > V2.
5. Déterminer la valeur exacte de la solution de
l'inéquation précédente.
6. Déterminer le signe de f(x) sur R.

Sagot :

ayuda

bjr

qui dit fonction affine dit : f(x) = ax + b

donc

Q1

si f(1) = 1 alors f(1) = a * 1 + b = 1

si f(5) = -7 alors f(5) = a * 5 + b = - 7

on a donc

a + b = 1         (1)

5a + b = -7

du (1) on a donc b = 1 - a

et donc on aura 5a + (1 - a) = -7

soit 4a = -8

a = - 2

et on en déduit b = 3

=> f(x) = - 2x + 3

Q2

comme le coef directeur = - 2 est négatif

=> droite descendante (cours)

soit

x          - inf            3/2             +inf

f                      D     O         D

D pour décroissante - flèche vers le bas

Q3

il vous faut 2 points pour tracer la droite

vous les avez dans l'énoncé

(1 ; 1) et (5 ; -7)

vous les placez dans un repère et tracez

Q4

f(x ) > √2

vous tracez une droite horizontale en y = √2

et vous notez l'intervalle où la droite est au dessus

Q5

résoudre f(x) = √2 soit -2x + 3 = √2

à vous

Q6

signe de f(x) ?

f(x ) > O qd -2x + 3 > 0

donc qd x < 3/2

x        - inf           3/2          +inf

f                    +     0       -

à dispo si besoin :)

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.