Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Bonjour, j’ai cet exercice dans mon dm sur le paradoxe de Zénon d’élée. Il concerne les suites et les limites. Merci en avance pour votre aide.

Bonjour Jai Cet Exercice Dans Mon Dm Sur Le Paradoxe De Zénon Délée Il Concerne Les Suites Et Les Limites Merci En Avance Pour Votre Aide class=

Sagot :

Bonjour :))

  • Question 1

[tex](U_n)\ d\'efinie\ sur\ \mathbb N\ par:\ U_n=\frac{1}{2^{n}}\\\\\frac{U_{n+1}}{U_n}=\frac{\frac{1}{2^{n+1}}}{\frac{1}{2^{n}}}=\frac{2^{n}}{2{n+1}}=\frac{2^{n}}{2*2^{n}}=\frac{1}{2}\\\\(U_n)\ est\ une\ suite\ g\'eom\'etrique\ de\ raison\ q=\frac{1}{2}\ et\ de\ premier\ terme\\U_0=\frac{1}{2^{0}}=1\\\\Donc\ U_n=1*(\frac{1}{2})^{n}[/tex]

  • Question 2, a)

[tex]Pour\ une\ suite\ g\'eom\'etrique\ on\ a:\\1+q+q^{2}+...+q^{n}=\frac{1-q^{n+1}}{1-q}\\\\Ici,\ on\ a:1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{n-1}} = 1 + q + q^{2}+q^{n-1}\\\Leftrightarrow \frac{1-q^{n}}{1-q}[/tex]

  • Question 2, b)

[tex]S_n=50*(1+\frac{1}{2}+\frac{1}{2^{2}}+...+\frac{1}{2^{n-1}})\\\\\boxed{S_n=50*\frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}}[/tex]

  • Question 3

[tex]RAPPEL:\lim_{n \to \infty} q^{n}=0\ \ \ si\ 0<q<1\\\\ \lim_{n \to \infty} S_n=50*\frac{1-0}{1-\frac{1}{2}}=50*2=100[/tex]

  • Question 4

[tex]La\ limite\ d'une\ suite\ finie\ pr\'ecise\ que\ la\ suite\ se\ rapproche\ de\ la\ valeur\\ finie\ quand\ n\ devient\ de\ plus\ en\ plus\ grand\ sans\ jamais\ atteindre\\cette\ valeur\ finie.\\\\On\ v\'erifie\ donc\ le\ paradoxe\ de\ Zenon\ El\'ee.[/tex]