Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Bonjour l’Équation à paramêtre
Soit a un nombre réel. On considère l'équation :
(Ea): x*x+(2-a)x-a-3=0
Montrer que, pour tout réel a, l'équation (Ea)
admet deux racines distinctes x1 et x2.
Exprimer, en fonction de a, la somme et le produit
des racines de l'équation (Ea).


Sagot :

Réponse :

bonjour, si ton exercice est encore d'actualité voici une réponse

Explications étape par étape :

(Ea)=x²+(2-a)x-a-3=x²+(2-a)x-(a+3)

Le nombre de solutions de l'équation (Ea)=0 dépend du signe du discriminant

Delta=(2-a)²+4 (a+3)=4-4a+a²+4a+12=a²+16

Quelque soit "a" delta est >0 donc (Ea)=0 admet deux solutions (x1 et x2) dans R.

Si E(x)=Ax²+Bx+C admet deux solutions x1 et x2 alors x1+x2=-B/A et x1*x2=C/A

appliquer à ton équation

S=x1+x2=-(2-a)/1=-2+a       P=x1*x2=-(a+3)/1=-a-3

.

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.