Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

Bonjour l’Équation à paramêtre
Soit a un nombre réel. On considère l'équation :
(Ea): x*x+(2-a)x-a-3=0
Montrer que, pour tout réel a, l'équation (Ea)
admet deux racines distinctes x1 et x2.
Exprimer, en fonction de a, la somme et le produit
des racines de l'équation (Ea).


Sagot :

Réponse :

bonjour, si ton exercice est encore d'actualité voici une réponse

Explications étape par étape :

(Ea)=x²+(2-a)x-a-3=x²+(2-a)x-(a+3)

Le nombre de solutions de l'équation (Ea)=0 dépend du signe du discriminant

Delta=(2-a)²+4 (a+3)=4-4a+a²+4a+12=a²+16

Quelque soit "a" delta est >0 donc (Ea)=0 admet deux solutions (x1 et x2) dans R.

Si E(x)=Ax²+Bx+C admet deux solutions x1 et x2 alors x1+x2=-B/A et x1*x2=C/A

appliquer à ton équation

S=x1+x2=-(2-a)/1=-2+a       P=x1*x2=-(a+3)/1=-a-3

.

Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.