Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Notre plateforme de questions-réponses vous connecte avec des experts prêts à fournir des informations précises dans divers domaines de connaissance. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

On considere les droites (d) et (d') d'equation respective 2x +y_2=0 et _3x+6y+4=0
Les droite (d) et (d') sont elle paralleles?
Sont elle perpendiculaire
Determine l'intersection de ces deux droites
Svp aide moi ce un devoir a rendre


Sagot :

Réponse :

Explications :

Bonjour,

Les droites sont  elles perpendiculaires ?

Soit AB vecteur appartenant à la droite (1) défini par A(0 ; 2) et B(1, 0) donc AB = (1 ; -2)

Soit CD vecteur appartenant à la droite (2) défini par C(0 ; -2/3) et D(4/3, 0) donc CD = (4/3 ; 2/3)

faisons le produit scalaire de AB . CD = (1 ; -2) . (4/3 ; 2/3) = 4/3 - 4/3 = 0

le produit scalaire est nul donc les 2 droites sont perpendiculaires.

2) les 2 droites se coupent au point d'intersection I(x ; y) commun aux 2 droites

(1) 2x + y = 2

(2) -3x + 6y = -4

faisons 6 * (1) - (2) soit 12x + 6y + 3x - 6y = 12 + 4 donc 15x = 16  et x = 16/15

reportons x = 16/15 dans (2) : -16/5 + 6y = -4 soit 6y = -4 + 16/5 et y = -2/15

Vérification :

(1) 2x + y = 2 soit 2 * 16/15 -2/15 = 30/15 = 2 OK

(2) -3x + 6y = -4 soit -3 * 16/15 - 6 * 2/15 = -4 OK

Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.