Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonjour à tous, j'ai une petite question qui me pose problème dans mon exercice. Voilà l'énoncé :
Dans cet exercice on va s'intéresser à des équations dites bicarrés qui sont de la forme a[x][/4]+b[x][/2]+c=0.
1. On veut résoudre l'équation (E) [x[/4]-6[x][/2]+8=0
a) Poser X=x²
b) Résoudre l'équation X²-6X+8=0
Mes recherches : la a) ne m'a posé aucun problème mais j'ai eu un petit problème sur la b). En effet j'ai donc fait le calcul suivant :
delta= b²-4ac = (-6)²-4*1*8=36-32=4
2 solutions : x1=8/2=4 et x2=4/2=2
Puis je retransforme en équation bicarré en faisant x²=4 et x²=2. Je trouve 4 solutions : 2,-2, racine carré de 2 et racine carré de -2
Pourtant quand je vérifie par lecture graphique ou même en remplaçant x par le calcul je ne trouve que deux solutions 2 et -2. Les racines carrés me paraissent donc fausses mais je ne comprends pas pourquoi. Pourriez vous m'aider ? Merci d'avance pour votre aide précieuse !


Sagot :

bjr

(E)

x⁴ - 6x² + 8 = 0

tes solutions sont correctes

il n'y a aucune raison pour qu'elles ne le soient pas, les calculs sont bons

si x = √2

(√2)⁴ - 6(√2)² + 8 = 4 - 12 + 8 = 0

il y a bien 4 solutions

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.