Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Bonjour, j’ai cet exercice pour mon dm sur la dérivation, la récurrence et les limites. L’exercice est en pièce jointe.

Bonjour Jai Cet Exercice Pour Mon Dm Sur La Dérivation La Récurrence Et Les Limites Lexercice Est En Pièce Jointe class=

Sagot :

Aeneas

Bonjour,

1) On a u1 = f(u0)

Donc u1 = f(3) = (2+3*3) / (4 + 3) = 11/7

2) Soit x ∈ [0;4]

On pose u(x) = 2+3x et v(x) = 4+x

On a alors f(x) = u(x) / v(x)

Donc f'(x) = (u'(x)v(x) - u(x)v'(x)) / v(x)² (formule de dérivation d'un quotient)

On a u'(x) = 3 et v'(x) = 1

Donc f'(x) = (3(4+x) - (2+3x)) / (4+x)²

On a alors :

f'(x) = (12 + 3x - 2 - 3x) / (4+x)²

f'(x) = 10 / (4+x)²

b) On a 10 > 0 et (4+x)² > 0 sur [0;4]

Donc f'(x) > 0 sur [0;4]

Donc f est strictement croissante sur [0;4]

3. On a u1 = 11/7 < 3 = u0

Donc la propriété est vraie au rang 0 (initialisation).

On suppose que la propriété est vraie au rang n >= 0, c'est à dire que :

1 <= un+1 <= un. (inéquation de récurrence)

C'est à dire que un est décroissante et minorée par 1.

On a u0 = 3

Donc 1 <= un+1 <= un <= 3

Comme un+1 <= un et que f est croissante sur [0;4] (donc aussi sur [1;3])

On a f(un+1) <= f(un)

Donc un+2 <= un+1 (inégalité droite de l'inéquation à démontrer)

On a f(1) = 1

Comme un+1 >= 1 (hypothèse de récurrence)

On a f(un+1) >= f(1) (car f est croissante sur [0;4] (donc aussi sur [1;3]))

Donc un+2 >= 1 (inégalité gauche de l'inéquation à démontrer)

D'où l'hérédité.

Au final ∀n∈N, on a 1 <= un+1 <= un

4a. D'après la propriété démontrée dans la question précédente, un est décroissante et minorée par 1. Donc un est convergente.

b. On cherche l ∈[1;3] tel que f(l) = l

On a alors :

l = (2 +3l) / (4 + l)

Donc l² + 4l = 2 +3l

l² + l - 2 = 0

Δ = 1 -4(1*(-2)) = 1+8 = 9 > 0

Le polynôme admet 2 racines :

l = (-1 + 3)/2 = 1

Et l = (-1 - 3)/2 = -2

Or un >= 1

Donc l = 1 est la seule solution possible.

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.