Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Calculer les limites suivantes:
Qlq’un peut m’aider svp


Calculer Les Limites Suivantes Qlqun Peut Maider Svp class=

Sagot :

Réponse :

Salut !

C'est dommage qu'on ait pas le droit d'utiliser les équivalents et les comparaisons asymptotiques, ça fait gagner un temps fou.

L'idée à gauche c'est de factoriser le terme "dominant" en l'infini. Tu sais que e^x "domine" toute puissance de x.

On fait donc,

[tex]\frac{2e^x - x^2 +2}{3e^x+1} = \frac{e^x(2-x^2e^{-x} + 2e^{-x})}{e^x(3 + e^{-x})} \to\limits_{x\to + \infty} \frac 23[/tex]

Pourquoi 2/3 ? Parce que on simplifie les e^x en haut et en bas, et on sait que x²e^(-x) et e^(-x) tendent vers 0 en + l'infini.

Pour le 2e, tu as juste à développer la parenthèse, c'est la somme de 2 limites qui sont nulles.

Explications étape par étape :

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.