Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Bonjour, je suis en première spé et j’aurais besoin d’aide sur cet exercice :
On considère la suite (Wn) défini pour n appartient à l’ensemble des entiers naturels.

Avec Wn+1=Wn/1+3Wn où W0=1

1. On considère la suite (Un) définie pour tout n appartient à l’ensemble N par Un= 1/Wn
a. Démontrer que la suite (Un) est une suite arithmétique dont vous déterminerez la raison et le premier terme.
b. En déduire l’expression Un en fonction de n, puis en déduire l’expression de Wn en fonction de n.

Merci d’avance


Sagot :

Réponse :

Explications étape par étape :

Wn+1 = Wn / (1 + 3Wn)   avec Wo = 1

   donc W1 = 0,25 ; W2 = 1/7 ; W3 = 0,1 ; W4 = 1/13 ; ...  

Un+1 = 1 / Wn+1 = (1 + 3Wn) / Wn

   donc U1 = (1 + 3) / 1 = 4

            U2 = 7 ; U3 = 10 ; U4 = 13 ; ...

   il est clair que la suite (Un) est bien une suite

   arithmétique croissante de terme initial

   U1 = 4 et de raison r = 3 .

■ remarque :

   on pourrait dire que (Un) a pour terme initial Uo = 1 .

Un = U1 + (n-1) x raison devient :

   Un = 4 + 3n - 3

   Un = 3n + 1 .

Wn = 1 / (3n+1) .

■ vérif :

   Wo = 1 ; W1 = 0,25 ; W2 = 1/7 ; W3 = 0,1 ;

   W4 = 1/13 ; W5 = 1/16 ; ...

Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.