Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

Bonjour, j’ai un exercice de mathématiques niveau 3e à rendre. Est ce que vous pouvez m’aider s’il vous plaît car je suis totalement bloquée.

Exercice :
Manon veut construire des cubes en bois pour sa petite fille. Ces cubes doivent pouvoir entrer dans l’ouverture circulaire d’une boîte qui a pour diamètre 5cm.

Quelle doit être la dimension maximale du côté des cubes ?

Sagot :

Aeneas

Bonjour,

Pour que le cube rentre dans l'ouverture circulaire de diamètre 5cm, il faut que la diagonale du cube puisse passer. Si la diagonale passe, tout passe.

Donc la diagonale doit être inférieur à 5cm.

La formule pour calculer la diagonale d d'un carré en ayant la longueur c d'un côté est :

d = [tex]\sqrt{2}[/tex] c

Donc c = [tex]\frac{d}{\sqrt{2} }[/tex] = [tex]\frac{d\sqrt{2} }{2}[/tex]

Ici comme d <= 5, on a c <= [tex]\frac{5\sqrt{2} }{2}[/tex] cm

La dimension maximale est donc c = [tex]\frac{5\sqrt{2} }{2}[/tex] cm soit environ 3.5cm arrondi au millimètre.

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.