Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonsoir ! qui peut m’aider en math svp ? bonne soirée !​

Bonsoir Qui Peut Maider En Math Svp Bonne Soirée class=

Sagot :

Réponse :

Explications étape par étape :

Bonsoir

d'après le théorème de Pythagore, on a

dans le triangle IGH , GH² + GI² = IH²

dans le triangle KLH, KH² + HL²= KL²

dans le triangle IKL, ce n'est pas possible car il n'est pas rectangle

dans le triangle KHI, KH² + HI² = KI²

exercice 2

Dans ces triangles, d'après le théorème de Pythagore, on a

16² + 12² = x²

x² = 256 + 144

x² = 400

x = √400

x = 20

b)

y² + 24² = 26²

y² = 26² - 24²

y² = 676 - 576

y² = 100

y = √100

y = 10

c)

z² = 7² + 6²

z² = 49 + 36

z² = 85

z = √85

9 ≤ z ≤ 10

d)

a² + 2,8² = 4,5²

a² = 4,5² - 2,8²

a² = 20,25 - 7,84

a² = 12,41

a = √12,41

3≤a≤4

exo 3

dans le triangle KLU, on a KL = 11 LU = 8 KU = 3

d’après la réciproque du théorème de Pythagore on a

LU² + KU² = 8² +3² = 81 + 9 = 90

KL² = 11² = 121

LU² + KU² ≠ KL² alors le triangle KLU n'est pas rectangle

dans le triangle LMP on a LM= 5,25 MP= 7 PL= 8,75

d’après la réciproque du théorème de Pythagore on a

LM² + MP² = 5,25² + 7² = 27,5625 + 49 = 76,5625

PL² = 8,75² = 76,5625

LM² + MP² =PL² donc le triangle LMP est rectangle

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.