Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

bonsoir, svp aidez moi; montrer par reccurence que n!>=2^(n-1)​

Sagot :

Bonjour,

Tout d'abord cette propriété est fausse, du moins pas pour tout n , exemple pour

Initialisation pour n = 0

0! = 1 et 2⁰–¹ = 2–¹ = 1/2 = 0,5 donc on a bien 0! ≥ 2^(n-1)

Hérédité : Supposons que la propriété est vraie au rang n, montrons que le rang n+1 l'est aussi

(n+1)! ≥ 2^(n-1+1)

n! × (n+1) ≥ 2^n

n! × (n+1) ≥ 2 × 2^(n-1)

On sait que n! > 2^(n-1)

→ tu termines

ccl : La propriété est donc vraie pour tout n

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.