Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

bonsoir, svp aidez moi; montrer par reccurence que n!>=2^(n-1)​

Sagot :

Bonjour,

Tout d'abord cette propriété est fausse, du moins pas pour tout n , exemple pour

Initialisation pour n = 0

0! = 1 et 2⁰–¹ = 2–¹ = 1/2 = 0,5 donc on a bien 0! ≥ 2^(n-1)

Hérédité : Supposons que la propriété est vraie au rang n, montrons que le rang n+1 l'est aussi

(n+1)! ≥ 2^(n-1+1)

n! × (n+1) ≥ 2^n

n! × (n+1) ≥ 2 × 2^(n-1)

On sait que n! > 2^(n-1)

→ tu termines

ccl : La propriété est donc vraie pour tout n

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.