Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.

Svp est-ce que vous pouvez m'aider !?
On considère un entier naturel n. Démontrer que si n est pair, alors n(n + 1) est pair. Démontrer que si n est impair, alors n(n+1) est pair. Que peut-on en conclure sur le produit de deux entiers consécutifs?​


Sagot :

Réponse:

on a n est pair donc n= 2k et n+1=2k+1

donc n (n+1)=2k (2k+1)

donc n (n+1)=4k^2 + 2k=2(2k^2+k)

d'où n (n+1)=2k' avec k'=2k^2+k

Finalement n (n+1) est pair

  • On déduit que le produit de deux nombres consécutifs est un nombre pair