Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.
Sagot :
bjr
ex 1
Q1
A(x) = aire du carré ABCD de côté x
= x * x = x²
et
B(x) = aire de BCDGFE
= aire AEFG - aire ABCD
= (x+1)² - x² = x² + 2x + 1 - x² = 2x + 1
Q2
a)
si x = 0 => aire ABCD A(0) = 0² = 0
si x = 0,5 => aire ABCD A(0,5) = 0,5² = 0,25
etc
b) vous placez les points trouvés dans un repère
soit (0 ; 0) puis (0,5 ; 0,25) etc..
lecture verticale des coordonnées des points
reste à relier les points
en abscisse : x = côté du carré
en ordonnée : f(x) = aire du carré (en fonction de son côté x)
c) il faut donc calculer f(√2+1) qui sera (√2+1)²
= √2² + 2*√2*1 + 1² = 3 + 2√2
Q3
a - B(x) = 2x + 1
fonction affine vue en 3eme - vous connaissez sa représentation graphique
bonjour
1 )
ABCD est un carré donc
A(x)= AB²
A(x) = x²
A(x) = x²
B(x) = A(AEFG)-A(x)
B(x) = (x+1)²-x²
B(x) = x²+2x+1-x²
B(x) = 2x+1
2.)
a.voir pj
b. voir pj
Cₐ
3)
A(1+√2) = (1+√2)²
= 1+2√2+2
=3+2√2
E(1+√2 ; 3+2√2)
3.a) la courbe de B est une droite
3.b) voir pj
3.c)
B(1+√2) = 2(1+√2)+1
B(1+√2) = 2+2√2+1
B(1+√2) = 3+2√2
4.a)
il suffit de résoudre l'équation B(x) =A(x)
A(x) = B(x)
or A(1+√2)=B(1+√2)=2+2√3
donc CA et CB se coupent au point de coordonnées (1+√2; 2+2√3)
b.
pour x∈[0;1+√2[; Cb est au dessus de CA
pour x ∈ [1+√2;+∞[ ; CA est au dessus de CB
conclusion
A(x) ≥ B(x) ⇔ x∈ [1+√2;+∞[
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.